

Digitaler Temperatur-Transmitter Typ T12.10, universell programmierbar, Kopfversion Typ T12.30, universell programmierbar, Schienenversion

WIKA Datenblatt TE 12.03

weitere Zulassungen siehe Seite 8

Anwendungen

- Prozessindustrie
- Maschinen- und Anlagenbau

Leistungsmerkmale

- Universell konfigurierbar mit Windows PC, Sensorsimulation nicht erforderlich
- Isolationsspannung AC 1.500 V zwischen Sensor und Stromschleife
- Signalisierung konfigurierbar für Fühlerbruch und Fühlerkurzschluss
- Für 100 % relative Feuchte, Betauung zulässig

Abb. links: Digitaler Temperatur-Transmitter Typ T12.10 Abb. rechts: Digitaler Temperatur-Transmitter Typ T12.30

Beschreibung

Diese Temperatur-Transmitter sind konzipiert zum universellen Einsatz in industriellen Anwendungen. Sie verfügen über eine hohe Genauigkeit, galvanische Trennung und Störsicherheit gegenüber elektromagnetischen Einflüssen.

Neben den verschiedensten Sensortypen wie z. B. Sensoren nach DIN EN 60751, JIS C1606, DIN 43760, DIN EN 60584 oder DIN 43710 können auch kundenspezifische Sensorkennlinien mittels Eingabe von Wertepaaren hinterlegt werden.

Die Art der Anschlussschaltung ist konfigurierbar und gewährleistet somit eine optimale Kompensation der Anschlussleitung. Eine Vergleichsstellenkompensation für Thermoelemente ist vorhanden, es kann aber auch eine externe Vergleichsstelle benutzt werden.

Ein hohes Maß an Überwachungsfunktionalität wird durch die konfigurierbare Signalisierung im Fehlerfall (z. B. Sensorbruch, Hardwarefehler, Über- oder Unterschreiten des Sensormessbereiches) erreicht.

Mit der Konfigurationssoftware WIKA_T12 (kostenloser Download unter www.wika.de) und dem als Zubehör erhältlichen Kommunikations-Interface (Programmiereinheit) können Konfigurationsänderungen schnell und einfach an den T12 übermittelt werden. Die bidirektionale Kommunikation ermöglicht dabei auch das Darstellen der Messwerte auf dem PC/Notebook.

Die Programmiereinheit versorgt den Temperatur-Transmitter Typ T12 mit Spannung, so dass auf eine zusätzliche Spannungsversorgung für den T12 beim Konfigurieren verzichtet werden kann.

Die Abmessungen der Kopftransmitter sind abgestimmt auf DIN-Anschlussköpfe der Form B mit erweitertem Montageraum, z. B. WIKA Typ BSS. Die Transmitter im Schienengehäuse sind für alle Normschienen nach IEC 60715 geeignet.

Ausgeliefert werden diese Transmitter mit einer Grundkonfiguration oder konfiguriert nach Kundenvorgabe.

WIKA Datenblatt TE 12.03 · 04/2015

Seite 1 von 8

Technische Daten

Eingang des Temperatur-Transmitters; konfigurierbar							
Widerstandssensor	Konfigurierbarer Mess- bereich 1)	Norm	Norm α-Werte		Minimale Mess- spanne	Typische Messabweichung bei 23 °C : Grundgenauigkeit Temperaturkoeff	
Pt100	-200 +850 °C	IEC 60751: 1996	$\alpha = 0.00385$		7	≤ ±0,2 °C ³⁾	≤ ±0,026 °C / °C ⁴⁾
Pt1000	-200 +850 °C	IEC 60751: 1996	a = 0.00385		35 SEK	≤ ±0.2 °C ³⁾	≤ ±0.026 °C / °C ⁴⁾
JPt100	-200 +500 °C	JIS C1606: 1989	$\alpha = 0,003916$			≤ ±0,2 °C ³⁾	≤ ±0,026 °C / °C ⁴⁾
Ni100	-60 +250 °C	DIN 43760: 1987	$\alpha = 0.0061$			≤ ±0.2 °C ³⁾	≤ ±0,026 °C / °C ⁴⁾
Widerstandssensor	0 5 kΩ	2 107 001 1001	0,000		30 Ω	$\leq \pm 0.07 \Omega^{5}$	$\leq \pm 0.026 \Omega /^{\circ}C^{5}$
Messstrom bei der	Messuna		max. 0,2 n	nA (P	t100)		
Schaltungsarten			,	,	/4- /3-Leiterschalt	ung	
Ü			(weitere H	inwei	se hierzu siehe Be	legung der Anschlus	sklemmen)
Max. Zuleitungswi	derstand		30 Ω je Le		B-Leiter symmetrisc		
Thermoelement	Konfigurierbarer Mess-	Norm	Minii		nale Messspanne	''	eichung bei 23 °C ±5 K
	bereich 1)					Grundgenauigkeit	Temperaturkoeffizient
Typ J (Fe-CuNi)	-100 +1.200 °C	IEC 584: 1998-06 IEC 584: 1998-06 DIN 43760: 1985-12		50 K oder 2 mV	≤ ±0,5 °C ⁶⁾	≤ ±0,05 °C / °C ⁶⁾	
Typ K (NiCr-Ni)	-180 +1.372 °C				≤ ±0,5 °C ⁶⁾	≤ ±0,05 °C / °C ⁶⁾	
Typ L (Fe-CuNi)	-100 +900 °C				≤ ±0,5 °C ⁶⁾	≤ ±0,05 °C / °C ⁶⁾	
Typ E (NiCr-Cu)	-100 +1.000 °C	IEC 584: 1998-06		*	groberer wert gilt	≤ ±0,5 °C ⁶⁾	≤ ±0,05 °C / °C ⁶⁾
Typ T (Cu-CuNi)	-200 +400 °C	IEC 584: 1998-06		J		≤ ±0,5 °C ⁶⁾	≤ ±0,05 °C / °C ⁶⁾
Typ N (NiCrSi-NiSi)	-180 +1.300 °C	IEC 584: 1998-06		100 l	<	≤ ±0,5 °C ⁶⁾	≤ ±0,05 °C / °C ⁶⁾
Typ U (Cu-CuNi)	-200 +600 °C	DIN 43710: 1985-12		75 k	<	≤ ±0,5 °C ⁶⁾	≤ ±0,05 °C / °C ⁶⁾
Typ R (PtRh-Pt)	-50 +1.768 °C	IEC 584: 1998-06		200 l	<	≤ ±0,5 °C ⁶⁾	≤ ±0,2 °C / °C ⁶⁾
Typ S (PtRh-Pt)	-50 +1.768 °C	IEC 584: 1998-06		200 l	<	≤ ±0,5 °C ⁷⁾	≤ ±0,2 °C / °C ⁶⁾
Typ B (PtRh-Pt)	0 +1.820 °C ²⁾	IEC 584: 1998-06		200 l	<	≤ ±0,5 °C ⁷⁾	$\leq \pm 0.2$ °C / °C $^{7)}$
Typ W3, W3Re, W25Re	0 +2.300 °C	ASTM E988		200 l	<	≤ ±0,5 °C ⁷⁾	≤ ±0,2 °C / °C ⁷⁾
Typ W5, W5Re, W26Re	0 +2.300 °C	ASTM E988		200 l	<	≤ ±0,5 °C ⁷⁾	$\leq \pm 0.2$ °C / °C $^{7)}$
mV-Sensor	-10 +800 mV			4 mV	1	≤ ±0,2 mV ⁸⁾	$\leq \pm 0.022 \text{ mV / °C}^{-8)}$
Schaltungsarten			1 Sensor				
Mary 7. daily as according to the control of				(weitere Hinweise hierzu siehe Belegung der Anschlussklemmen) 250 Ω			
Max. Zuleitungswiderstand Vergleichstellenkompensation, konfigurierbar				interne Kompensation oder extern mit Pt100, mit Thermostat oder ausge-			
vergieichstellenko	mpensation, konfigurierb	ar	schaltet				
				Solitation			

fett gedruckt: Grundkonfiguration

EW = Endwert des konfigurierten Messbereiches

Anwender-Linearisierung

Mittels Software können kundenspezifische Sensorkennlinien im Transmitter abgelegt werden, um weitere Sensortypen nutzen zu können. Anzahl der Stützstellen: min. 2; max. 30

Analogausgang, Ausgangsgrenzen, Signalisierung, Isolationsfestigkeit				
Analogausgang, konfigurierbar	temperaturlinear nach IEC 60751, JIS C1606, DIN 43760 (für Widerstandssensoren) oder temperaturlinear nach IEC 60584, DIN 43710 (für Thermoelemente) 4 20 mA oder 20 4 mA, 2-Leiter			
Ausgangsgrenzen, konfigurierbar	untere Grenze	obere Grenze		
nach NAMUR NE43	3,8 mA	20,5 mA		
nicht aktiv	3,6 mA	23,0 mA		
kundenspezifisch einstellbar	3,6 4,0 mA	20,0 23,0 mA		
Stromwert für Signalisierung, konfigurierbar	zusteuernd	aufsteuernd		
nach NAMUR NE43	< 3,6 mA (3,5 mA)	> 21,0 mA (21,5 mA)		
Ersatzwert	3,5 12,0 mA	12,0 23,0 mA		
Im Simulationsmodus unabhängig vom Eingangssignal, Simulationswert konfigurierbar von 3,5 23,0 mA				
Bürde R _A	$R_A \le (U_B - 9 V) / 0,023 A$ mit R_A in Ω und U_B in V			
Isolationsspannung (Eingang zu Analogausgang)	AC 1.500 V, (50 Hz / 60 Hz); 60 s			
Leistungsaufnahme bei U _B = 24 V	max. 552 mW			

¹⁾ Weitere Einheiten z. B. °F und K möglich 2) Technische Daten gültig nur für Messbereich zwischen 400 \dots 1.820 °C

³⁾ Bezogen auf 3-Leiter Pt100, Ni100, EW 150 °C 4) Bezogen auf EW 150 °C, im Umgebungstemperaturbereich -40 ... +85 °C 5) Bezogen auf R_{Gesamt} 1 k Ω (3-Leiter)

^{-40 ... +85 °}C für T12.10 bzw.
-20 ... +70 °C für T12.10 bzw.
-20 ... +70 °C für T12.30

7) Bezogen auf EW 1.000 °C im Umgebungstemperaturbereich -40 ... +85 °C für T12.30

Anstiegszeit, Dämpfung, Messrate				
Anstiegszeit t ₉₀	ca. 0,5 s			
Dämpfung, konfigurierbar	ausgeschaltet; Konfiguration von 0,5 s bis 60 s möglich			
Einschaltzeit (Zeit bis zum ersten Messwert)	5 s			
Messrate	Messwertaktualisierung ca. 2/s			

fett gedruckt: Grundkonfiguration

Messabweichung, Temperaturkoeffizient							
Bürdeneinfluss	\pm 0,01 % der Messspanne / 100 Ω						
Hilfsenergieeinfluss	±0,005 % der Messspanne / V	±0,005 % der Messspanne / V					
Aufwärmzeit	nach ca. 5 Minuten werden die im Datenb	nach ca. 5 Minuten werden die im Datenblatt angegebenen technischen Daten (Genauigkeiten) erreicht					
Eingang	Messabweichung ¹⁾ nach DIN EN 60770, 23 °C ±5 K	Temperaturkoeffizient ²⁾ von -40 +85 °C	Einfluss der Zuleitungswider- stände				
Widerstandsthermometer (Pt100)	±0,2 K oder ±(0,025 % EW + 0,1) K	±(0,025 % EW + 0,09) K / 10 K	4-Leiter: kein Einfluss (0 bis 30 Ω je Ltg.)				
Widerstandssensor	$\pm 0,\!07~\Omega$ oder $\pm 0,\!03~\%$ EW in Ω	±(0,025 % EW + 0,01) Ω / 10 K	3-Leiter: $\pm 0.02 \Omega / 10 \Omega$ (0 bis 30 Ω je Ltg.) 2-Leiter: Widerstand der Zuleitung ⁴⁾				
Thermoelement Typ T, E, J, L, K, N, U 3)	±0,5 K oder ±0,05 % EW oder ±10 μV	±(0,05 % EW + 0,1) K / 10 K oder ±0,5 K / 10 K					
Typ R, S, W3, W5	±0,5 K oder ±0,05 % EW oder ±10 μV	±2 K / 10 K	0,5 μV / 10 Ω ⁵⁾				
Тур В	400 °C < MW < 1.820 °C: ±1,7 K oder ±10 μV	±2 K / 10 K	0,5 μV / 10 Ω ⁵⁾				
mV-Sensor	±10 μV oder ±0,05 % EW in mV	±(0,05 % EW + 0,02) mV / 10 K	0,1 μV / 10 Ω ⁵⁾				
Vergleichsstelle	±1,0 K	±0,2 K / 10 K					
Ausgang	±0,05 % der Messspanne	±0,1 % der Messspanne / 10 K					

Gesamtmessabweichung Addition: Eingang + Ausgang nach DIN EN 60770, 23 $^{\circ}\text{C}$ $\pm5~\text{K}$

EW Endwert des konfigurierten Messbereiches

- 1) Größerer Wert gilt
- 2) Bei erweitertem Umgebungstemperaturbereich (-50 \dots +85 °C) gilt der doppelte Wert
- 3) Thermoelemente Typen T, K, N, U: gültig nur für konfigurierten Messbereichsanfang \geq -150 $^{\circ}\text{C}$
- 4) Durch Messung des Widerstandswertes manuell kompensierbar.
- 5) Im Bereich bis 250 Ω Zuleitungswiderstand

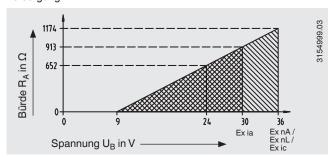
Überwachung	
Prüfstrom zur Sensorüberwachung ⁶⁾	nom. 33 μA während Prüfzyklus, sonst 0 μA
Fühlerbruchüberwachung	aktiviert
Selbstüberwachung	automatisches Durchführen eines Initialtests nach Anlegen der Hilfsenergie

⁶⁾ Nur für Thermoelement

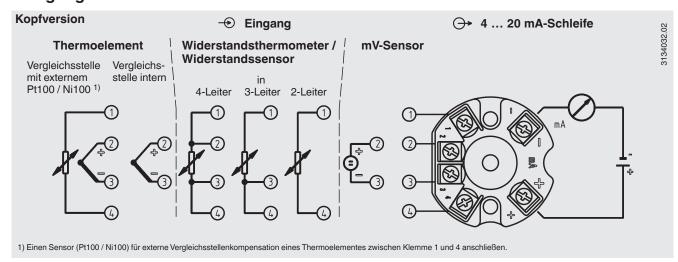
Explosionsschutz, Hilfsenergie						
Тур	Zulassungen	Zulässige Umgebungs- und Lagertemperatur	Sicherheitstechnisch Sensor (Anschlüsse 1 bis 4)	e Höchstwerte für Stromschleife (Anschlüsse ±)	Hilfsenergie UB ¹⁾	
T12.10.000, T12.30.000	ohne	-40 +85 °C -20 +70 °C	-	-	9 36 V	
T12.10.002, T12.30.002	EG-Baumusterprüfbescheinigung: DMT98 ATEX E 008 X Zonen 0, 1: II 1G EEx ia IIB/IIC T4/T5/T6 Eigensicher nach Richt. 94/9/EG (ATEX)	-20 +60 °C (16)	$U_{0} = DC 11,5 V$ $I_{0} = 31 \text{ mA}$ $P_{0} = 87 \text{ mW}$ IIB: $C_{0} = 11 \mu\text{F}$ $L_{0} = 8,6 \text{ mH}$ IIC: $C_{0} = 1,5 \mu\text{F}$ $L_{0} = 8,6 \text{ mH}$	$\begin{aligned} &U_{i} = DC \ 30 \ V \\ &I_{i} = 100 \ mA \\ &P_{i} = 705 \ mW \\ &C_{i} = 25 \ nF \\ &L_{i} = 0,65 \ mH \end{aligned}$	9 30 V	
T12.10.006, T12.30.006	CSA File No. 1396919 Intrinsically safe: Klasse I, Division 2, Gruppe A, B, C, D	-40 +85 °C (T4) -40 +75 °C (T5) -40 +60 °C (T6) -20 +70 °C (T4) -20 +70 °C (T5) -20 +60 °C (T6)	$\begin{aligned} & U_{oc} = DC \ 11,5 \ V \\ & I_{sc} = 31 \ mA \\ & P_{max} = 87 \ mW \\ & C_{a} = 0,4 \ \mu F \\ & L_{o} = 8,65 \ mH \end{aligned}$	$\begin{aligned} &U_{max} = DC \ 30 \ V \\ &I_{max} = 100 \ mA \\ &P_{max} = 705 \ mW \\ &C_i = 25 \ nF \\ &L_i = 0,65 \ mH \end{aligned}$	9 30 V	
T12.10.009, T12.30.009	Zone 2: II 3G Ex nA IIC T4/T5/T6 II 3G Ex nL IIC T4/T5/T6 II 3G Ex ic IIC T4/T5/T6	-40 +85 °C (T4) -40 +75 °C (T5) -40 +60 °C (T6) -20 +70 °C (T4) -20 +70 °C (T5) -20 +60 °C (T6)	$U_0 = DC 5 V$ $I_0 = 0.25 \text{ mA}$ $C_0 = 1.000 \mu\text{F}$ $L_0 = 1.000 \text{ mH}$	$\begin{split} &U_{i} = DC \ 36 \ V \\ &P_{i} = 1 \ W \\ &C_{i} = 25 \ nF \\ &L_{i} = 0,65 \ mH \end{split}$	9 36 V	

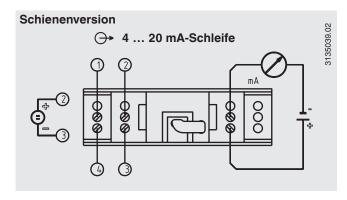
Umgebungsbedingungen	
Klimaklasse DIN EN 60654-1	T12.10: Cx (-40 +85 °C, 5 95 % r. F.) T12.30: Bx (-20 +70 °C, 5 95 % r. F.)
Maximal zulässige Feuchte	T12.10: 100 % r. F. (unbegrenzt bei isolierten Sensoranschlussleitungen) Betauung zulässig DIN IEC 68-2-30 Var. 2 T12.30: 90 % r. F. (DIN IEC 68-2-30 Var. 2)
Vibration	10 2.000 Hz, 5 g, DIN IEC 68-2-6
Schock	DIN IEC 68-2-27, 30 g
Salznebel	DIN IEC 68-2-11
EMV-Richtlinie	2004/108/EG, DIN EN 61326 Emission (Gruppe 1, Klasse B) und Störfestigkeit (industrieller Bereich), sowie nach NAMUR NE21

Gehäuse	T12.10 Kopfversion	T12.30 Schienenversion
Material	Kunststoff PBT, glasfaserverstärkt	Kunststoff
Gewicht	0,07 kg	0,2 kg
Schutzart ²⁾	IP 00 Elektronik komplett vergossen	IP 20
Anschlussklemmen (Schrauben unverlierbar)	Kabelquerschnitt max. 1,5 mm²	Kabelquerschnitt max. 2,5 mm²

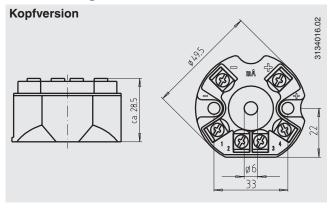

²⁾ Schutzart gemäß IEC 60529 / EN 60529

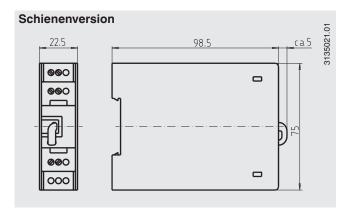
¹⁾ Eingang der Hilfsenergie geschützt gegen Verpolung; Bürde Ra ≤ (Uв - 9 V) / 0,023 A mit Ra in Ω und Uв in V { } Angaben in geschweiften Klammern beschreiben gegen Mehrpreis lieferbare Sonderheiten, nicht für Schienenversion T12.30



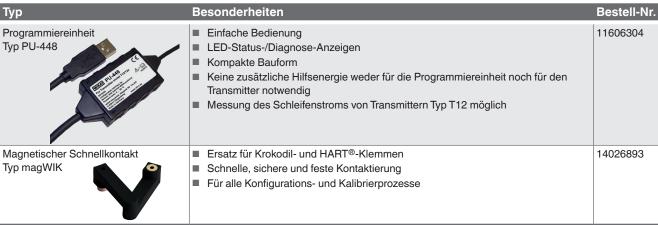

Bürdendiagramm

Die zulässige Bürde hängt ab von der Spannung der Schleifenversorgung.

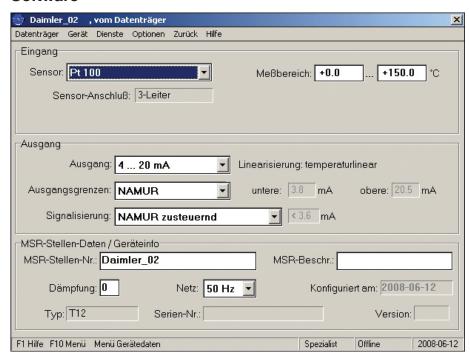



Belegung der Anschlussklemmen

Abmessungen in mm

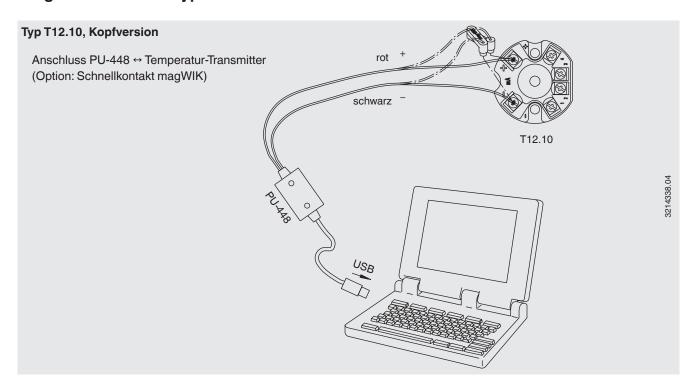


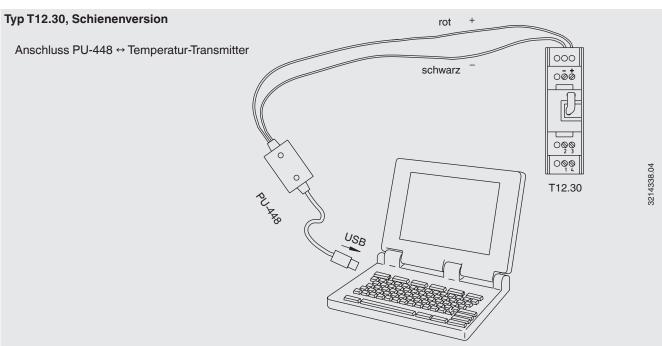
Zubehör


Feldgehäuse, Adapter

Тур	Ausführung	Besonderheiten	Abmessungen	Bestell-Nr.
Feldgehäuse	Kunststoff (ABS)	Feldgehäuse, IP 65, zur Montage eines Transmitters in Kopfversion, zulässiger Umgebungstemperaturbereich: -40 +80 °C 82 x 80 x 55 mm (B x L x H), mit zwei Kabelverschraubungen M16 x 1,5	80 x 82 x 55 mm	3301732
Adapter	Kunststoff / CrNi-Stahl	passend zu TS 35 nach DIN EN 60715 (DIN EN 50022) bzw. TS 32 nach DIN EN 50035	60 x 20 x 41,6 mm	3593789
Adapter	Stahl verzinnt	passend zu TS 35 nach DIN EN 60715 (DIN EN 50022)	49 x 8 x 14 mm	3619851

Konfigurationsset


Software



Konfigurationssoftware WIKA_T12 (mehrsprachig, Online-Hilfe) als kostenloser Download unter www.wika.de

Programmiereinheit Typ PU-448 anschließen

CE-Konformität

EMV-Richtlinie

2004/108/EG, EN 61326 Emission (Gruppe 1, Klasse B) und Störfestigkeit (industrieller Bereich)

ATEX-Richtlinie (Option)

94/9/EG

Zulassungen (Option)

- NEPSI, Zündschutzart "i" Eigensicherheit, China
- CSA, Zündschutzart "i" Eigensicherheit, Kanada
- EAC, Einfuhrzertifikat, Zündschutzart "i" Eigensicherheit, Zündschutzart "iD" Staubschutz durch Eigensicherheit, Zündschutzart "n", Zollunion Russland/Belarus/Kasachstan
- GOST, Metrologie/Messtechnik, Russland
- INMETRO, Institute of Metrology, Brasilien

Zertifikate/Zeugnisse (Option)

- 2.2-Werkszeugnis
- 3.1-Abnahmeprüfzeugnis
- DKD/DAkkS-Zertifikat

Zulassungen und Zertifikate siehe Internetseite

Bestellangaben

Typ / Ausführung (Kopf- oder Schienenversion) / Explosionsschutz / Sensortyp / Konfiguration / Zulässige Umgebungstemperatur / Zeugnisse / Optionen

© 2008 WIKA Alexander Wiegand SE & Co. KG, alle Rechte vorbehalten.
Die in diesem Dokument beschriebenen Geräte entsprechen in ihren technischen Daten dem derzeitigen Stand der Technik.
Änderungen und den Austausch von Werkstoffen behalten wir uns vor.

Seite 8 von 8

WIKA Datenblatt TE 12.03 · 04/2015

WIKA Alexander Wiegand SE & Co. KG Alexander-Wiegand-Straße 30 63911 Klingenberg/Germany Tel. +49 9372 132-0

Fax +49 9372 132-406 info@wika.de

info@wika.de www.wika.de